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1. Introduction

My research lies in the intersection of model theory and combinatorics, and is particularly con-
cerned with how combinatorial properties of families of finite structures relate to properties of the
automorphism group of corresponding infinite limit structures. A centerpiece of this field is the
Fräıssé construction, which assigns a homogeneous limit structure, which has a very rich automor-
phism group, to a family of finite structures satisfying the amalgamation property.

Examples of homogeneous structures include the rational order (Q, <) (the Fräıssé limit of all
finite linear orders) and the infinite random graph (the Fräıssé limit of all finite graphs). The
Fräıssé construction and its generalization by Hrushovski have been used to produce structures
with prescribed properties, providing solutions to major questions in model theory, as well as other
fields including permutation groups, combinatorics, and topological dynamics.

One of the most studied combinatorial properties of a family of finite structures is the Ramsey
property. Ramsey-type properties identify highly structured pieces in large, seemingly disordered
structures. We postpone a formal definition.

The Ramsey property implies the amalgamation property, under a mild side condition known
as the joint embedding property [31]. The following seminal result from [25] connects the Ram-
sey property for a family of finite structures to an unusually strong dynamical property of the
automorphism group of its Fräıssé limit.

Theorem 1.1 (Kechris, Pestov, Todorčević). Let G = Aut(M) for M homogeneous. Then G is
extremely amenable iff the class of finite substructures of M has the Ramsey property.

More generally, the Ramsey property, together with a related combinatorial property called
the expansion property, allows for the computation of the universal minimal flow [3, 29, 32], an
important dynamical invariant, for automorphism groups of countable structures.

Another example of a combinatorial property of families of finite structures is the extension
property for partial automorphisms, which has several consequences for the automorphism group of
the corresponding Fräıssé limit, including amenability [26].

The amalgamation and Ramsey properties also appear in more traditional combinatorial set-
tings, and we list a few examples. Weakenings of these properties, namely 1-amalgamability and
unsplittabiliy, have been applied to bound the growth of certain permutation patterns, as dis-
cussed in the survey [24]. Counting the orbits of the action of a homogeneous (or more generally
ω-categorical) group yields familiar integer sequences. Finally, in constraint satisfaction problems,
working over a homogeneous domain allows the machinery from finite domains to be carried over
to infinite domains, and the Ramsey property has been a key tool in the further analysis of the
complexity of such problems [4–6] .

2. Prior Work

2.1. Homogeneous Permutation Structures.

Definition 2.1. A structure M is homogeneous if any isomorphism between finite substructures
of M extends to an automorphism of M .
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Classifying all homogeneous structures of a given type is a common problem (e.g. [12,13,15,27,
28]). For a homogeneous structure to be Ramsey, it must have a definable linear order [25], and so
the classification of various homogeneous structures equipped with a linear order is of particular
importance for identifying new examples in structural Ramsey theory [31].

This was the motivation for the classification of homogeneous ordered graphs. However, no new
examples were uncovered by the classification, as it turned out every homogeneous ordered graph
arises in simple fashion from an unordered homogeneous structure (either a graph, tournament, or
partial order) [15]. To be more precise, these structures are interdefinable with generic expansions by
a linear order of homogeneous graphs or tournaments, or generic linear extensions of homogeneous
partial orders. It is natural to ask whether a similar statement might hold more generally, which
would greatly simplify classifying homogeneous ordered structures.

Question 1. Is every homogeneous ordered structure interdefinable with an expansion of a homo-
geneous proper reduct by a linear order?

Is every primitive homogeneous ordered structure interdefinable with an expansion of a homo-
geneous proper reduct by a generic linear order?

The minimal case to test this would be to start with a structureless set, iteratively add linear
orders, and observe the homogeneous structures that appear.

Definition 2.2. An n-dimensional permutation structure is a structure in a language consisting
of n linear orders.

In the case n = 2, these structures may be viewed as permutations, with the first order providing
the natural order and the second order providing the permuted order. Isomorphism types are then
what combinatorialists call permutation patterns.

The classification of the homogeneous structures in the case n = 1 (linear orders) and n = 2
(permutations) were known, the latter carried out in [12], where the question of classifying the
homogeneous n-dimensional permutation structures was originally posed. For n = 1, the only
homogeneous structure is Q, while for n = 2 the structures are interdefinable with ordered graphs,
and so are part of the previous discussion.

My first and third papers [9,11] are concerned with the classification of homogeneous n-dimensional
permutation structures.

In [9], I undertook the first step in the classification of the homogeneous n-dimensional permu-
tation structures: taking a “census” of naturally occurring examples. This led me to prove the
following, via a construction producing many new imprimitive examples.

Theorem 2.3 ([9], B.). Let Λ be a finite distributive lattice. Then there is a homogeneous finite
dimensional permutation structure whose lattice of ∅-definable equivalence relations is isomorphic
to Λ.

A subtle modification to the language used in the construction that yields Theorem 2.3 captures
all known examples, and led to a conjectured classification of the homogeneous finite dimensional
permutation structures, which, if true, falls into the regime suggested by Question 1. Further
evidence in support of this conjectured classification was provided by another result from [9],
suggesting that the lattice of ∅-definable equivalence relations in a homogeneous finite dimensional
permutations ought to be distributive.

Theorem 2.4 ([9], B.). Let Λ be the lattice of ∅-definable equivalence relations in a homogeneous
finite dimensional permutation structure M. If the reduct of M to the language of equivalence
relations from Λ is homogeneous, then Λ is distributive.

In [11], I classified the homogeneous 3-dimensional permutation structures, and the conjectured
classification is confirmed in this case.
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Theorem 2.5 ([11], B.). The homogeneous 3-dimensional permutation structures are as conjec-
tured. In particular, they may be produced by the modified construction from Theorem 2.3.

2.2. Structural Ramsey Theory.

Definition 2.6. Let K be a class of structures closed under isomorphism. Given A,B ∈ K, let
(
B
A

)
denote the set of substructures of B that are isomorphic to A. We will say K is a Ramsey class if
for any n ∈ N and A,B ∈ K, there is a C ∈ K such that if

(
C
A

)
is colored with n colors, there is a

B̂ ∈
(
C
B

)
such that

(
B̂
A

)
is monochromatic.

One of the main questions of the subject is whether every relational amalgamation class can
be expanded to a Ramsey class by adding finitely many relations. (An example of Hrushovski’s
generalization of the Fräıssé construction disproved the stronger question replacing “homogeneous”
with “ω-categorical” [18].)

In [21], a powerful general framework for proving that a given class of structures is Ramsey was
presented. In particular, this framework applies to structures whose Fräıssé limit has a non-trivial
model-theoretic algebraic closure operation. This allowed the authors to prove several new classes
are Ramsey, including classes with nested definable equivalence relations, which had been largely
unmanageable with previous methods. However, most of the examples presented in that paper had
a Fräıssé limit with a unary algebraic closure operation, meaning the closure of a set was determined
by the closures of its elements, which significantly simplified applying the framework.

In [10], I used the framework from [21] to find Ramsey expansions of generic Λ-ultrametric spaces,
resulting in some of the first known Ramsey classes whose Fräıssé limits have a non-unary algebraic
closure operation (other such classes were presented in [22]). Λ-ultrametric spaces, which arose
in the construction for Theorem 2.3, are a convenient language for expressing structures equipped
with a family of equivalence relations, and the proof of the Ramsey property for this class provides
a blueprint for handling other classes with non-nested equivalence relations. The main theorem of
[10] identifies the minimal Ramsey expansion for these structures, i.e. the relations that must be
added to make the class Ramsey, and provides a restatement in terms of topological dynamics.

Theorem 2.7 ([10], B.). Let Λ be a finite distributive lattice and Γ be the generic Λ-ultrametric
space. For every meet-irreducible E ∈ Λ, expand Γ by a generic subquotient order from E to its

successor, let ~Γmin = (Γ, (<Ei)
n
i=1) be structure thus obtained, and ~Amin

Λ its finite substructures.
Then

(1) ~Amin
Λ is a Ramsey class and has the expansion property relative to AΛ.

(2) The logic action of Aut(Γ) on Aut(Γ) · (<Ei)
n
i=1 is the universal minimal flow of Aut(Γ).

3. Future Work

3.1. Decidability of Joint Embedding. Given a countable hereditary class of finite structures,
there exists a countable structure whose finite substructures are the given class, thus providing some
notion of a limit structure, exactly when the class satisfies the joint embedding property (JEP), i.e.
for any two structures in the class there exists another they embed into.

The JEP has been studied in the context of permutation pattern classes (i.e. classes of 2-
dimensional permutation structures specified by forbidden substructures), under the name atomic-
ity, and been used to bound growth rates and provide structure theorems. In [30], it was shown that
whether a class is natural, a more restrictive requirement, is decidable from the forbidden patterns.
However, the corresponding question for the JEP, posed in initially in 2005 [33] and asked again in
2017 [24], is open.

Question 2. Given a finite set of forbidden permutations, is it decidable whether the corresponding
permutation pattern class has the JEP?
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I have investigated the corresponding question for graphs via a reduction to the tiling problem,
anticipating the argument used there will carry over to the permutation pattern case through the
use of suitable coding techniques afforded by the existence of infinite antichains of permutations.
For graphs, I have proven the following.

Theorem 3.1 (B.). Given a finite set of forbidden induced subgraphs, it is undecidable whether
the corresponding hereditary graph class has the JEP.

3.2. Model Theory of Permutation Pattern Classes. The JEP provides a countable permu-
tation embedding all finite permutations in a permutation pattern class. However, upon taking the
permutations-as-structures viewpoint introduced in [12], a more incisive model-theoretic question is
to ask for a countable permutation embedding all countable permutations in a permutation pattern
class. The existence of such a countable universal structure can be viewed as a strengthening of
the JEP or a weakening of amalgamation.

The universality problem has been extensively studied in the case of graphs [14]. However,
the general theory developed there based on an algebraic closure operation depends on forbidding
subgraphs rather than induced subgraphs. As induced substructures are the relevant concept for
permutation pattern classes, new techniques will be necessary. In the graph case, the universal
structures that arise are generally canonical, in the sense of being the unique countable model of
the model companion of the theory of the hereditary family; we may hope for the same to be true
for permutations.

Question 3. Which classes of countable permutations, specified by avoiding finitely many patterns,
contain a universal permutation?

When is the above universal permutation canonical, i.e. when does the theory of a permutation
pattern class have a model companion with a unique countable model?

Are these questions decidable given the forbidden patterns?

The question of the decidability of the JEP for permutation pattern classes may be a preparatory
step toward the above questions; while the JEP is certainly necessary for the existence of a countable
universal permutation, it has also been conjectured to be sufficient [23].

The existence of such a structure is an indication of model-theoretic tameness, and if a canonical
limit theory is provided, further model-theoretic properties can be investigated. These properties
often provide a means for separating highly structured classes from wild ones.

Question 4. Does the existence of a canonical universal permutation (in the above sense), or
further model-theoretic properties of that structure’s theory (e.g. NIP) have combinatorial conse-
quences for the corresponding permutation pattern class (e.g. bounds on growth rate)?

Are these further model-theoretic properties decidable given the forbidden patterns?

See [35] for the use of an NIP-like tameness condition to bound the growth rate of hereditary
families.

3.3. Extension Property for Partial Automorphisms. A theorem useful for proving the ex-
tension property for partial automorphisms (EPPA) for classes whose Fräıssé limit has a unary
algebraic closure operation was recently proven in [19]. However, as was noted there, the EPPA is
not known in any non-trivial cases with a non-unary closure. As evidenced in recent work such as
[1], techniques used to establish the Ramsey property, centering around a method for completing
partial structures, may also lead to the EPPA. As such a completion method was used to prove the
Ramsey property for Λ-ultrametric spaces, they are a promising candidate for the EPPA.

Question 5. Given a finite distributive lattice Λ, does the class of all finite Λ-ultrametric space
have the EPPA?
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Hubička and Nešetřil have recently begun to consider a generalization of metric spaces [20], here-
after generalized Λ∗-metric spaces, subsuming both Λ-ultrametric spaces and the generalized metric
spaces introduced by Conant in [17]. The distances in a generalized Λ∗-metric space come from
a commutative partially ordered monoid; Conant had previously considered the linearly ordered
case. This provides a unified method for treating many homogeneous structures, such as Cherlin’s
catalog of metrically homogeneous graphs [15], as metric structures, with forbidden substructures
arising from violations of the triangle inequality. As Conant has already proven the EPPA for his
structures when the monoid is semi-archimedean [16], generalized Λ∗-metric spaces are a natural
next step after Λ-ultrametric spaces.

Question 6. For which partially-ordered, commutative monoids does the corresponding class of
finite generalized Λ∗-metric spaces have the EPPA?

3.4. Homogeneous Permutation Structures. Several natural questions remain regarding the
work from §2.1. During the classification of the 3-dimensional case, an “exotic” structure arose and
was ultimately proven not to exist, but heavily using n = 3.

Question 7. Do similar “exotic” structures arise for higher n?

The construction behind the conjectured classification produces ordered Λ-ultrametric spaces,
which are made interdefinable with permutation structures by adding further orders. The next
question asks how efficiently this translation can be done, and is needed to determine what the
conjecture actually says for a particular n.

Question 8. Given a lattice Λ, what is the minimal n such that Λ is the lattice of ∅-definable
equivalence relations in some homogeneous n-dimensional permutation structure?

Perhaps the most obvious question is the following.

Question 9. What are the homogeneous 4-dimensional permutation structures?

This is of interest for several reasons. First, it may answer Question 7. Second, classifying
the primitive cases will almost certainly require computer assistance, and the techniques developed
ought to be helpful for other classification problems. Finally, this is the first case in which non-linear
lattices of ∅-definable equivalences will appear, raising issues not considered in [11].

It is easy to see that homogeneous permutation structures have NIP, a model-theoretic tameness
property. There are various notions of rank for NIP theories, including VC-density and dp-rank,
and many open questions concerning the relations of these rank notions, so computing them for
particular theories may be illuminating.

Question 10. What are the dp-rank and VC-density of the theories of homogeneous permutation
structures?

3.5. The Limit Theory of the Triangle-Free Process. The triangle-free process is a graph
process which starts with n vertices and adds edges randomly so long as they do not form a triangle.
This process gives the best known lower bounds for the triangle Ramsey numbers R(3, t), and its
generalizations give the best known lower bounds for certain cases of the extremal Zarankiewicz
problem [7,8].

The limit theories of the random graph Gn,p for various p have been intensively studied [34],
particularly concerning 0-1 laws, i.e. whether every first order sentence is almost surely true or
almost surely false as n → ∞. For graph theorists, this answered questions about which values
of p can be threshold functions, and for model theorists turned out to be intimately related to
Hrushovski constructions [2].

Question 11. Does the triangle-free process have a 0-1 law?
If so, what are the model-theoretic properties of its limit theory?
If not, is the limit theory wild, e.g. does it interpret a suitably large fragment of arithmetic?
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[24] Vı́t Jeĺınek, Ramsey-Type and Amalgamation-Type Properties of Permutations, Surveys in Combinatorics 2017

440 (2017), 272.
[25] Alexander S Kechris, Vladimir G Pestov, and Stevo Todorčević, Fräıssé limits, Ramsey theory, and topological
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